Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Nano ; 16(9): 15206-15214, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36054658

RESUMO

Catalyst activity can depend distinctly on nanoparticle size and shape. Therefore, understanding the structure sensitivity of catalytic reactions is of fundamental and technical importance. Experiments with single-particle resolution, where ensemble-averaging is eliminated, are required to study it. Here, we implement the selective trapping of individual spherical, cubic, and octahedral colloidal Au nanocrystals in 100 parallel nanofluidic channels to determine their activity for fluorescein reduction by sodium borohydride using fluorescence microscopy. As the main result, we identify distinct structure sensitivity of the rate-limiting borohydride oxidation step originating from different edge site abundance on the three particle types, as confirmed by first-principles calculations. This advertises nanofluidic reactors for the study of structure-function correlations in catalysis and identifies nanoparticle shape as a key factor in borohydride-mediated catalytic reactions.


Assuntos
Nanopartículas , Boroidretos , Catálise , Fluoresceínas , Nanopartículas/química , Tamanho da Partícula
2.
ACS Nano ; 15(7): 11535-11542, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34156229

RESUMO

In plasmon-mediated photocatalysis it is of critical importance to differentiate light-induced catalytic reaction rate enhancement channels, which include near-field effects, direct hot carrier injection, and photothermal catalyst heating. In particular, the discrimination of photothermal and hot electron channels is experimentally challenging, and their role is under keen debate. Here we demonstrate using the example of CO oxidation over nanofabricated neat Pd and Au50Pd50 alloy catalysts, how photothermal rate enhancement differs by up to 3 orders of magnitude for the same photon flux, and how this effect is controlled solely by the position of catalyst operation along the light-off curve measured in the dark. This highlights that small fluctuations in reactor temperature or temperature gradients across a sample may dramatically impact global and local photothermal rate enhancement, respectively, and thus control both the balance between different rate enhancement mechanisms and the way strategies to efficiently distinguish between them should be devised.

3.
Nat Commun ; 11(1): 4832, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973158

RESUMO

In catalysis, nanoparticles enable chemical transformations and their structural and chemical fingerprints control activity. To develop understanding of such fingerprints, methods studying catalysts at realistic conditions have proven instrumental. Normally, these methods either probe the catalyst bed with low spatial resolution, thereby averaging out single particle characteristics, or probe an extremely small fraction only, thereby effectively ignoring most of the catalyst. Here, we bridge the gap between these two extremes by introducing highly multiplexed single particle plasmonic nanoimaging of model catalyst beds comprising 1000 nanoparticles, which are integrated in a nanoreactor platform that enables online mass spectroscopy activity measurements. Using the example of CO oxidation over Cu, we reveal how highly local spatial variations in catalyst state dynamics are responsible for contradicting information about catalyst active phase found in the literature, and identify that both surface and bulk oxidation state of a Cu nanoparticle catalyst dynamically mediate its activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...